
Parallel Clustering for Visualizing Large Scientific Line Data

Jishang Wei∗

University of California, Davis

Hongfeng Yu†

Sandia National Laboratories

Jacqueline H. Chen‡

Sandia National Laboratories

Kwan-Liu Ma§

University of California, Davis

ABSTRACT

Scientists often need to extract, visualize and analyze lines from
vast amounts of data to understand dynamic structures and inter-
actions. The effectiveness of such a visual validation and analysis
process mainly relies on a good strategy to categorize and visualize
the lines. However, the sheer size of line data produced by state-
of-the-art scientific simulations poses great challenges to preparing
the data for visualization. In this paper, we present a parallelization
design of regression model-based clustering to categorize large line
data derived from detailed scientific simulations by leveraging the
power of heterogeneous computers. This parallel clustering method
employs the Expectation Maximization algorithm to iteratively ap-
proximate the optimal data partitioning. First, we use a sorted-
balance algorithm to partition and distribute the lines with various
lengths among multiple compute nodes. During the following iter-
ative clustering process, regression model parameters are recovered
based on the local lines on each individual node, with only a few
inter-node message exchanges involved. Meanwhile, the workload
of regression model computing is well balanced across the nodes.
The experimental results demonstrate that our approach can effec-
tively categorize large line data in a scalable manner to concisely
convey dynamic structures and interactions, leading to a visualiza-
tion that captures salient features and suppresses visual clutter to
facilitate scientific exploration of large line data.

1 INTRODUCTION

Advanced computing and imaging techniques enables scientists to
study problems of unprecedented complexity at high fidelity. Es-
pecially, an advanced simulation can generate vast amounts of data
from hundreds to thousands of time steps with tens of variables.
From such large complex data, scientists often need to extract or
derive line data to help understand dynamic structures and interac-
tions hidden in the data. Typical examples of line data include white
matter fibers, time series curves, and vector field lines, which are of
great interest in many areas of study from diffusion-tensor imaging
(DTI), groundwater simulations, and design of particle accelerators,
to any studies generating vector fields.
To ensure all essential aspects of features of interest are captured,

a large number of lines are often generated. However, it is challeng-
ing to cope with large line data. First, very dense lines are typically
intertwined, and introduce high visual complexity. Visual clutter
can be easily occurred in a visualization, which hinders users from
perceiving structural information contained in the line data. Sec-
ond, the sheer number of lines can easily overwhelm the computing
and memory capacity of a single PC, making it difficult to perform
analysis tasks efficiently.
To address these issues, our solution is based on parallel clus-

ter analysis. Cluster analysis is an intelligent data analysis method,
which categorizes data items with similar properties into clusters.

∗e-mail:jswei@ucdavis.edu
†e-mail:hyu@sandia.gov
‡e-mail:jhchen@sandia.gov
§e-mail:ma@cs.ucdavis.edu

This method has been widely employed to assist users to study
dense line data. In our case, by applying clustering, a large line
data set is partitioned into many small subsets, each of which rep-
resents a characteristic line type. The clustering results allow us to
examine selected line clusters independent of others, or to derive a
higher-level view of the data by using representative lines from each
cluster. The resulting visualization is thus free of visual clutter.
However, cluster analysis of large data is computationally ex-

pensive. In order to accelerate the calculations, we turn to het-
erogeneous computers with multiple CPUs and GPUs for high-
performance clustering of large line data. Our design distributes
the line data among the cluster nodes based on a sorted-balance al-
gorithm to ensure a well-balanced workload assignment. Then, the
lines on each GPU are first smoothed with a B-Spline model and
then sampled to obtain their vector descriptors. Next, the lines are
partitioned with a parallel regression model-based clustering pro-
cess into a user-specified number of categories. The resulting clus-
ters of lines can then be visualized individually or together in any
combination. In addition, visualizing line data in conjunction with
volume or surface rendering of the field data can help scientists
better validate their data, understand temporal correlations between
different features, and possibly discover previously unknown inter-
actions.
We present our work on extracting and classifying large line data

derived from data generated by detailed scientific simulations, such
as solar plume and turbulent combustion, for uncovering complex
structures and correlations in the data. We note that the require-
ments and challenges of visualizing and analyzing large line data
are representative, and our approach can be extended and benefit
other fields that involve large line data analysis.

2 RELATED WORK

Cluster analysis has proved to be a pivotal technique to assist in
line data analysis and visualization. Tremendous research has been
done for clustering and visualizing lines in the literature [1, 14, 20].
Researchers have presented various approaches for clustering dif-
ferent types of lines. Examples include white matter fibers, time
series curves, and vector field lines, to name a few.
To segment and visualize tractography fibers produced from DTI

data, most approaches generally share a common procedure of first
defining a similarity metric, and then employing clustering algo-
rithms. For instance, Shimony et al. [22] tested several distance
metrics that include functions of the distance between tracks and
shape information. They used the fuzzy c-means algorithm for
clustering. Brun et al. [3] compared pairwise fiber traces in a
dimension-reduced Euclidean feature space to create a weighted
and undirected graph that is partitioned into the coherent sets using
the normalized cut. O’Donnell et al. [17] utilized the symmetrized
Hausdorff distance as the similarity measurement among trajecto-
ries and achieved spectral clustering using the Nyström method and
the k-means algorithm in an embedding space. Tsai et al. [24]
constructed tract distances between fiber tracts from dual-rooted
graphs where both local and global dissimilarities are taken into
account. The considered distance is then incorporated in a locally
linear embedding framework and clustering is performed using the
k-means algorithm. Curve modeling has also been utilized in clus-
tering white matter fibers. For example, Maddah et al. [13] defined
a spatial similarity measure between curves for a supervised cluster-



ing algorithm, and the Expectation-maximization (EM) algorithm is
used to cluster the trajectories in the context of a gamma mixture
model.

In time series curves analysis and visualization, Van Wijk and
Selow [25] proposed a cluster and calendar based analytical tool to
explore and visualize univariate time series data. Schreck et al. [21]
introduced a user-supervised self-organizing map (SOM) cluster-
ing algorithm that enables users to watch and control the computa-
tion process visually. Anderson et al. [2] presented a segmentation
framework for analysis and meaningful visualization of function
field data.

Regarding vector field visualization, it is critical to extract dis-
tinct clusters to deliver important information and avoid clutter.
Yu et al. [28] presented hierarchical streamline bundles, a new ap-
proach to simplifying and visualizing 2D flow fields. Wei et al. [26]
advocated a user-centric approach to cluster and visualize field lines
in the vector field. The method allows users to sketch curves for
trajectory pattern matching and classification. Rössl et al. [19] de-
veloped a method that maps 3D streamlines to points in 3D based
on the preservation of the Hausdorff metric in streamline space.
Then they applied standard clustering methods to the point sets to
construct a segmentation of the original 3D vector field.

The overwhelming data generated in scientific experiments and
simulations present a great challenge to data clustering and visu-
alization. A main route to handle the large data issue is to adapt
traditional clustering approaches in a parallel and distributed com-
puting environment, such as CLARANS [15], Fractionization [4]
and BIRCH [29]. In our work, we extend and parallelize the re-
gression model based clustering to categorize and visualize large
lines data.

3 CLUSTER ANALYSIS OF LINES

Conventional clustering techniques roughly fall into five families:
partitioning methods, hierarchical methods, model-based methods,
density-based methods, and grid-based methods [9]. Note that these
algorithms are based on either pairwise similarities or vector de-
scriptors of data objects. The algorithms based on pairwise simi-
larities, such as the hierarchical methods, have computational com-
plexities that usually are quadratic in the number of objects n, or
worse. Such high orders can incur high run-time memory require-
ments for applications with large data. Moreover, regarding line
data, specially when the lengths of which vary, it is nontrivial to de-
sign an appropriate pairwise similarity metric. On the other hand,
the algorithms based on vector descriptors, such as the model-based
methods, have the complexity of order n and are comparatively effi-
cient. Furthermore, the model-based methods can incorporate prior
knowledge naturally. They provide a principled approach for clus-
tering lines with different lengths if a proper mixture model is cho-
sen. This is a favorable characteristic in line data clustering. There-
fore, we utilize and improve a polynomial regression model-based
clustering method [6, 7, 8] to categorize large line data.

Before introducing our parallel implementation for large line
data in Section 4, we first give an overview of our polynomial
regression model-based clustering method on B-Spline modeled
lines.

3.1 Line Representation

In our work, we use vectors to describe lines. Without loss of gen-
erality, a line l in D dimensional space is represented as:

l= (p1,p2, ...pC) (1)

whereC, the number of points along l, is defined as the line length,
and pi is a point of dimension D.

3.2 Line Preprocessing

Aswith most problems in line data analysis, a suitable choice of line
description and representation would lead to the ease and efficiency
of clustering. In our application, we first fit lines with a uniform
B-spline model to smooth data while preserving their shape and
location information. We then sample a sequence of points at an
equal arc length along a modeled line, and use this set of sample
points to represent the line for the successive clustering process.

3.2.1 Smoothing Lines with Uniform B-Spline Model

Uniform B-Spline is a convenient form to represent complex,
smooth curves. It is in general chosen because of the ease of manip-
ulation. By being fitted to the uniform B-Spline model, a line l can
be defined as a function of parameter t in the range of [tmin, tmax],
where tmin and tmax correspond to the beginning and end of the line:

l= p(t) (2)

3.2.2 Sampling on B-Spline Modeled Lines

In our application, we represent a line by a set of sample points at an
equal arc length. It is desirable to evaluate a parametric B-Spline
line at points based on its arc length instead of the line’s original
parameter t. Thus, the line l needs to be represented as a function
of parameter s in the range of [0, L], where L is the total length of
the line, i.e.,

l= p(s) (3)

Let p(s) and p(t) denote the same line, in which p(s) = p(t)
implies a relationship between t and s. We apply the chain rule to
obtain:

dp(t)

dt
=
dp(s)

ds

ds

dt
(4)

Then we have:
∣

∣

∣

∣

dp(t)

dt

∣

∣

∣

∣

=

∣

∣

∣

∣

dp(s)

ds

∣

∣

∣

∣

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

=
ds

dt
(5)

where

∣

∣

∣

dp(s)
ds

∣

∣

∣
=

∣

∣dp(s)
∣

∣

|ds| = 1, and dsdt is nonnegative as the arc length

s increases with the increase of t. From Equation 5, we can get the
relationship between s and t by integration:

s=
∫ t

tmin

∣

∣

∣

∣

dp(τ)

dt

∣

∣

∣

∣

dτ (6)

where s = 0 for t = tmin, and s = L for t = tmax. It means that
given a parameter t, we can determine the corresponding arc length
s from the integration. However, what is needed is to solve an in-
verse problem: Given an arc length s, we want to know the corre-
sponding t. To solve this, we employ numerical methods to com-
pute t ∈ [tmin, tmax], given the value of s ∈ [0, L]:

dt

ds
=

1
∣

∣

∣

dp(t)
dt

∣

∣

∣

(7)

Equation 7 can be solved numerically with any standard differential
equation solver such as the Runge-Kutta method.

With l= p(s), we then can obtain R sample points at a specified
equal arc length:

l= (p(s1),p(s2), ...p(sR)) (8)



3.3 Regression Model-based Clustering

3.3.1 Linear Regression Models

Regression is a method for fitting a line through a set of points us-
ing some goodness-of-fit criterion. One of the most common types
of regression is linear regression. Let x be an independent variable,
and let p(x) denote an unknown function of x that we want to ap-
proximate. Assume there are R observations, i.e., the values of p(x)
measured at the specified values of xr are given as:

p(xr) = pr, r = 1, · · · ,R. (9)

Regarding each dimension of one line p(x), the idea behind lin-
ear regression is to model p(x) by a linear combination of Q basis
functions:

p(x)≈ β1ψ1(x)+ · · ·+βQψQ(x) (10)

In our case, we use polynomial basis functions, namely,

p(x)≈ β0+β1x+ · · ·+βQx
Q (11)

If we consider a line l =
(

p(x1), p(x2), . . . , p(xR)
)

, Equation 11
can be written as,

l= Xβ + ε (12)

where l is a matrix of R×D, representing a line of length R in D
dimensional space. β is a Q×D dimensional matrix of regression
coefficients, and ε is an R×D noise matrix. X is the usual R×Q
Vandermonde regression matrix:

X=











x1
0 x1

1 x1
2 . . . x1

Q

x2
0 x2

1 x2
2 . . . x2

Q

...
...

...
...

...

xR
0 xR

1 xR
2 . . . xR

Q











(13)

3.3.2 Model-based Clustering

Model-based clustering can be regarded as the generalization of the
K-means algorithm [10, 12]. In the context of model-based cluster-
ing, the whole set of lines is assumed to be derived from a mixture
model of K components that correspond to K clusters. Each compo-
nent model is associated with a probabilistic density function. With
regard to our case, each line is represented by a mixture model of
K component polynomial regression models with Gaussian error
terms, as shown in Equation 12. Let pk denote the probability at
which a line is generated by the cluster k, and then the mixture den-
sity for generating one line l is:

p(l|Θ) = ∑
k

αkpk(l|θk) (14)

where αk denotes the probability of cluster k, which is nonnega-
tive and all component probabilities (for k = 1 . . .K) sum to one.
θk indicates the parameters of component model k. Each compo-
nent θk contains regression coefficients βk and Gaussian covari-
ance parameter δk. Thus, the mixture model is represented as
Θ = {θ1, · · · , θK}.
pk(l|θk)means the probability of component model k generating

line l. In our work, the model component takes a form as Equation
12. As a result, the regression model leads to a cluster-specific
probabilistic density function for l:

pk(l|θk) = N (l|Xβk, σk
2I)

=
R

∏
r=1

N (pr|Xβk, σk
2I) (15)

whereN (�) is a D dimensional Gaussian probability density func-
tion; Xβk and σk

2I are the mean vector and covariance matrix of
the kth Gaussian density function, respectively.
As a flavor of K-means method, the objective function of model-

based clustering maximizes the likelihood, L (Θ|L), of generating
the line data set L(L= {l1, l2, . . . , lN}), given the mixture model Θ.
In practice, the likelihood can be represented by any function of Θ
that is proportional to the probability p(L|Θ). In our application,
the log of the likelihood of L is applied:

L (Θ|L) = log p(L|Θ) = ∑
n

log
K

∑
k

αkpk(ln|θk) (16)

To this end, conducting model-based clustering is to estimate the
parameters of the K component models given a set of lines, and then
to assign each line to a cluster with the highest probability among
all K clusters. The Expectation-Maximization (EM) algorithm pro-
vides an efficient framework for parameter estimation in the mix-
ture model context [5], and we choose it for our model-based clus-
tering. In the polynomial regression model-based clustering, the
EM algorithm is executed as follows.

• E-Step: We assume that yn, associated with each ln, indicates
the line membership in one of the K clusters. The posterior
p(yn|ln) is calculated to give the probability that the nth line
is generated by cluster yn. The probability of ln generated by
cluster k takes the form [7]:

wnk = p(yn = k|ln) ∝ αkpk(ln) = αkN (ln|Xβk, σk
2I) (17)

• M-Step: The likelihood in Equation 16 is maximized with
respect to the parameters {βk, σk

2, αk}. The solutions [7] are
given as:

βk =
[

∑
n

wnkX
′
nXn

]−1
∑
n

wnkX
′
nln (18)

σ2k =
1

∑nwnk
∑
n

wnk‖ln−Xnβk‖
2 (19)

αk =
1

N
∑
n

wnk (20)

After obtaining these mixture model parameters, we can use them
to compute the probability value by Equation 15, and then refer
each line to a cluster with the highest probability value.

4 PARALLEL IMPLEMENTATION

To process large line data, we implement our regression model-
based clustering using a hybrid approach with MPI and CUDA by
leveraging the power of CPUs and GPUs on multiple nodes in a het-
erogeneous environment. To ensure the feasibility and scalability of
our approach, we consider the complete course of our clustering ap-
proach, design the parallel implementation of each step and assign
them to the CPUs and/or GPUs based on their characteristics and
associated constraints.
First, for the line preprocessing step (Section 3.2), we could

treat it as a one-time preprocessing step, save the resulted B-Spline
modeled lines, and repeatedly load them for later different cluster-
ing runs to generate clusters with different inputs. However, given
the sheer size of line data, it is generally desired to minimize stor-
age overhead for particular analysis tasks, thus requiring us to per-
form line preprocessing on-the-fly. We note that the operations of
smoothing and sampling on different lines are independent of each



Algorithm 1 Parallel Regression Model-based Clustering

Input: N lines; M compute nodes.
Output: K clusters.
1: // Partitioning and distributing N lines to M nodes
2: for each compute node in parallel do
3: Performs the sorted balancing algorithm independently to

decide its own line assignment
4: Performs MPI collective I/O to fetch its own line data
5: end for
6: // Preprocessing
7: for each compute node in parallel do
8: Transfers its lines from CPU to GPU
9: Smooths its lines with uniform B-Spline model on GPU
10: Samples its lines to obtain their vector descriptors on GPU
11: Copies the line vector descriptors from GPU to CPU
12: end for
13: // Initialization
14: for each compute node in parallel do
15: Randomly initializes the probability pik of each local line li

belonging to a cluster k, constrained by ∑Kk=1 pik = 1
16: end for
17: All nodes calculate βk,σ

2
k ,αk according to Equations 18, 19

and 20 using the psgels routine of SCALAPACK
18: // Model-based clustering
19: while true do
20: // E-Step
21: for each compute node in parallel do
22: Calculates the probability pik of each local line li be-

longing to a cluster k by Equation 17, constrained by

∑Kk=1 pik = 1
23: end for
24: // Likelihood calculation
25: All nodes all gather the total likelihoodL in Equation 16
26: if the increment of L is less than a specified threshold or

the iteration number is greater than a specified limit then
27: break
28: end if
29: // M-Step
30: All nodes calculate βk,σ

2
k ,αk according to Equations 18, 19

and 20 using the psgels routine of SCALAPACK
31: end while
32: // Generating final membership
33: for each compute node in parallel do
34: Puts each local line li to a cluster k where the line has the

highest probability pik
35: end for

other, which allows us to carry out the preprocessing step efficiently
on the GPUs.

Second, for the clustering step (Section 3.3), researchers [11, 18]
have been developing different implementations of the EM algo-
rithm to estimate mixture Gaussian models in parallel. We extend
the parallel EM algorithm with respect to regression mixture mod-
els. Different from Gaussian mixture models, regression mixture
models describe a group of lines with a regression line and the as-
sociated deviation. One key step is to obtain {βk, σk

2, αk} by
solving Equation 12 as a linear least square problem. Such a solv-
ing step can be performed more efficiently on the CPU than on the
GPU, because the solving step is bandwidth limited and the current
bandwidth between the CPU and the GPU is lower than that of the
CPU’s bus [23]. Therefore, in our design, we choose the SCALA-
PACK package with the optimized CPU BLAS to solve the linear
least square problem on large data using multiple CPUs.

Third, we need to design a data partitioning and distribution
scheme to favor both the preprocessing step and the clustering step,

Algorithm 2 Sorted Balancing

Input: list of lengths and indexes of N lines; number of compute
nodes M.

Output: assigned line list Am, where m ∈ [1,M].
1: For each node m, set its assigned line list Am← ∅, and set its
assigned accumulated line length Lm← 0

2: Sort the input line list in a decreasing order of their lengths
3: for each line l in the sorted line list do
4: Let d be the node whose Ld is minimal
5: // Assign l to the node d
6: Ad ← l’s index
7: Ld ← Ld + l’s length
8: end for

and minimize the overhead of data transformation and transfer be-
tween different steps. The challenge comes from the disparity of
data partition requirements between different operations to achieve
a balanced workload. For the operations of smoothing and sam-
pling in the preprocessing step, and for the operation of E-Step,
each atomic operand is an individual line, implying a partition of
the lines with respect to their associated operation costs. For the
operation of M-Step, the operands are the matrix presentations of
all lines, and the corresponding solver provided by SCALAPACK
requires an even partition of the matrices. In our design, we use
a sorted balancing algorithm to partition and distribute the lines to
achieve a well-balanced workload for each step and minimize the
inter-node communication cost for data exchanges.

Algorithm 1 lists the detailed procedure of our parallel regression
model-based clustering. We first partition and distribute the lines to
multiple compute nodes based a sorted balancing algorithm. After
obtaining its line assignment, each node first smooths lines with the
B-Spline model and then samples the lines to obtain their vector
descriptors. This step is performed on the GPUs by exploiting the
high levels of concurrency enabled by CUDA. Next, the parallel
model-based clustering algorithm is launched to collectively find a
number of clusters based on the line vector descriptors. Our line
partition and distribution scheme makes it possible to leverage the
scalability of SCALAPACK and perform this step efficiently across
the CPUs. Thus, by considering the characteristics of different steps
and the interplay between them, we carefully distribute the work-
loads of different steps among the different processing units and
can maximize the utilization of the heterogeneous computers.

4.1 Lines Partitioning and Distribution

We need partition and distribute the lines with different lengths to
multiple compute nodes and ensure the balanced workload of each
step assigned to the nodes. First, in the preprocessing step and the
E-Step, we note that each line is processed independently of each
other. Moreover, as we sample a line at an equal arc length, the
workload associated with a line is proportional to its length. Thus,
the total length of lines assigned to each node should be approxi-
mately equal.

Second, given the vector descriptors of lines, we construct the
matrices l, X, β , and ε in Equation 12, where the row number of
l, X and ε is equal to the total sampling point number of all lines.
To solve such a large system in the M-Step, we use the psgels rou-
tine of SCALAPACK, which requires to evenly divide the matrices
along rows to produce a Cartesian distribution of each matrix 1. We
can implicitly divide these large matrices by constructing the local
matrices from the local vector descriptors at each node. However,
as the local total sampling point number at each node is not neces-

1Compared with the total number of sampling points, the dimension D

is relatively small (such as two or three) in our current study. Thus we did

not divide the matrices along columns.



# avg points # avg samples # compute nodes
case data set # lines per line per line 1 2 3 4 5 6 7 8

1 (small case) solar plume 10,000 501 71 x x x x x x x x
2 (small case) combustion 10,000 101 35 x x x x x x x x
3 (medium case) combustion 100,000 101 35 x x x x x x x x
4 (large case) combustion 1,000,000 101 35 x x x x x

Table 1: Setup of scalability study. Entries marked with “x” represent experiment runs.

sarily the same, the constructed local matrices can have the differ-
ent numbers of rows. One possible solution is to exchange partial
vector descriptors among the nodes to make all the local matrices
have a same or nearly same number of rows. But this method re-
quires the message exchanges of partial vector descriptors possibly
among all nodes at each iteration of the Model-based clustering. On
the other hand, we note that if the total length of lines assigned to
each node is nearly equal, the differences of total length of the local
vector descriptors among the nodes are marginal. It allows us to
append a minimal number of rows of zeros to the local matrices to
make them have the same number of rows. This method achieves
the same solving results without involving communication cost, and
the computational overhead due to the extra zeros is negligible in
practice.
To this end, we use a sorted balancing algorithm in our work to

divide and assign the lines among the nodes. Algorithm 2 sketches
our sorted balancing algorithm. The only inputs to the algorithm
are the list of lengths and indexes of all lines and the number of
compute nodes. Each node executes the sorted balancing algorithm
independently to calculate the line assignment that makes the total
line length assigned to each node is nearly equal.
By the sorted balancing algorithm, each node can obtain the in-

dex list of its assigned lines. For each node, the assigned line
data may not be contiguously stored in the original line data file.
To minimal the I/O overhead for each node fetching its own line
data from the storage, we first use MPI Type create struct and
MPI File set view to set a file view for each node with respect to
its own list of assigned line indexes and the list of line offsets. And
then all nodes use the MPI collective I/O routine MPI File read all
to collaboratively fetch its own line data in parallel.

4.2 Line Preprocessing

On each compute node, the preprocessing stage takes advantage of
the parallel capability of GPUs to smooth and sample the bunch of
lines. The operations of smoothing and sampling performed on one
line is independent of other lines. This allows us to use the typi-
cal CUDA program model to process each line using one CUDA
thread. After fetching its own line data from the storage, each node
transfers the line data from the main memory to the GPU memory
given the line representation as described in Section 3.1. Then, a

kernel SMOOTH-SAMPLE is called on a grid of NB thread blocks,
where N is the number of lines assigned to one processor and B
is the thread number of each block. The appropriate value of B
depends on the available GPU resources, such as on-chip shared
memory and registers. Each thread in the SMOOTH-SAMPLE ker-
nel first smooths a line using the uniform B-Spline Model, and then
generates a set of sample points along the line at a specified equal
arc length. Then, the set of sample points of each line are trans-
ferred back from the GPU memory to the main memory, which are
used as the vector descriptors for the successive clustering step.

4.3 Model-based Clustering

After preprocessing, each node obtains a vector descriptor for each
local line. During the initialization stage of the clustering, given
a specific target cluster number K, each node first randomly as-
signs a probability value pik of each local line li belonging to a

cluster k. Each node constructs its local matrices l, X, β , and ε
in Equation 12. A minimal number of rows of zeros are appended
to the end of the matrices to make them have the same number of
rows among all nodes. Then the linear least square solver psgels
of SCALAPACK is called to solve βk, σ2k , and αk according to
Equations 18, 19 and 20 with the initial guess of probability values.
After the initialization stage, the clustering then carries out the it-
erative EM algorithm, until the overall likelihood has converged at
an optimal value or the iteration number is greater than a specified
limit. Finally, each node puts each local line li to a cluster k where
the line has the highest probability value pik to generate the final
membership.

4.3.1 E-Step

The E-Step is responsible for calculating the probability of assign-
ing lines into each cluster, which can be executed independently for
each line. Although we could use CUDA to implement a kernel for
this step, such computing is bandwidth limited, and the data trans-
ferring cost between the CPU and the GPU can exceed the com-
putational saving obtained on the GPU. Therefore, we advocate a
simple CPU implementation that lets each node iterate through all
local lines and compute the probability densities of each line be-
longing to each of the mixture components according to Equation
17.

4.3.2 M-Step

The M-Step estimates the parameters of each component regression
model, βk, σ2k and αk. We use a linear least square solver to esti-
mate βk according to Equation 18. Since the whole line data set is
distributed across different nodes, we choose the linear least square
solver psgels of SCALAPACK using multiple CPUs. Then we em-
ploy the matrix multiplication routine psgemm of SCALAPACK
to calculate σ2k according to Equation 19. The size of αk is 1×K,
where K is the number of clusters. αk is obtained to all proces-
sors using the MPI Allreduce routine. Note that the local matrices
of all nodes have been made to have the same number of rows by
appending a minimal number of rows of zeros, and such append-
ing only needs to be done once during the initialization stage. In
this way, we can satisfy the data partition specifications posed by
SCALAPACK and ensure the balanced workloads of the solvers on
multiple CPUs.

5 RESULTS AND DISCUSSION

We have experimented our parallel polynomial regression model-
based clustering on a heterogeneous system containing 8 nodes
connected by the Gigabit Ethernet. Each node contains one Intel
quad-core 3.00GHz CPU with 4GB of memory, and one NVIDIA
GeForce GTX 285 GPU.
The line data sets from two large scientific simulations have been

used in our experimental study. The first data set contains 10,000
streamlines extracted from the vector field of a solar plume sim-
ulation provided by the scientists at the National Center for At-
mospheric Research. The domain grid size of the vector field is
504×504×2048 and the average streamline length is proportional
to the domain diagonal. The second data set contains the time se-
ries curves correlating multiple variables, which are generated from



C
as
e
1

C
as
e
2

C
as
e
3

C
as
e
4

Smoothing Time Sampling Time E-Step Time M-Step Time

Figure 1: Speedups of scalability study. In each plot, the horizontal axis represents the number of nodes, and the vertical axis represents the
running time in second. The left to the right columns show the timing results of smoothing, sampling, E-Step, and M-Step, respectively, for Cases
1 to 4. The timing results corresponding to each case are plotted on the rows.

large-scale combustion simulations conducted by Sandia National
Laboratories. This data set contains 1,000,000 time series curves
and each curve correlates, over 808 time steps, two key parameters
in the phase space: mixture fraction and temperature.

We used these two data sets to design and conduct four sets of
scalability experiments with respect to the different problem sizes.
Table 1 shows the experimental setup. We used the 10,000 stream-
lines of the solar plume data set in Case 1, and the 1,000,000 time
series curves of the combustion data set in Case 4. The curves of
Cases 2 and 3 were obtained by randomly sampling the curves of
Case 4. We tested any number of compute nodes from 1 to 8 in
Cases 1 to 3, and any number of compute nodes from 4 to 8 in Case
4. Figure 1 shows the performance results. Each row represents the
results for a set of scalability experiments. Each column represents
the results of the same operation for the different problem sizes.

The first column of Figure 1 shows the performance of the
smoothing operation performed on the GPUs. In general, the
smoothing time decreases accordingly as we use more compute
nodes. However, we notice that the timing roughly remains about
the same beyond 4 nodes for Case 1, and beyond 2 nodes for Case 2.
The main possible reason is that when the node count increases to a
certain number, the workload associated with the lines assigned to

each GPU may not invoke sufficient number of threads to fully uti-
lize the parallelism provided by CUDA, and the performance gain
obtained by the GPU can be suppressed by the data transfer over-
head between the CPU and the GPU [16]. Consequently, the paral-
lel efficiency is only 51.3% (8 nodes vs. 1 node) for Case 1. The
line number used in Case 2 is same as Case 1, but the average point
number per line in Case 2 is much smaller so that the parallel effi-
ciency is even worse for Case 2, which is only 26.7% (8 nodes vs. 1
node). In Cases 3 and 4, when much large line sets are considered,
we can better exploit the GPU parallelism and improve the scala-
bility performance. The parallel efficiencies are 72.5% and 98.4%
for Case 3 (8 nodes vs. 1 node) and Case 4 (8 nodes vs. 4 nodes),
respectively.

The second column of Figure 1 shows the performance of the
sampling operation performed on the GPUs. Similar to the smooth-
ing operation, the speedup of the sampling operation improves ac-
cordingly when we increase the number of lines to saturate the
GPU. The parallel efficiencies of sampling are 45.9%, 32.0%,
75.3%, and 98.4% for Cases 1 to 4, respectively. Moreover, the high
parallelism provided by the GPU allows us to perform the comput-
ing intensive processing task efficiently. For instance, in our exper-
imental study, the time to smooth and sample 100,000 lines using



Case 1 smoothing time (0.53%) Case 1 sampling time (1.64%) Case 1 E-Step time (0.11%) Case 1 M-Step time (0.03%)

Case 4 smoothing time (3.46%) Case 4 sampling time (2.09%) Case 4 E-Step time (0.16%) Case 4 M-Step time (0.01%)

Figure 2: Workloads among 8 nodes for Cases 1 and 4. In each plot, the horizontal axis represents the node ID, and the vertical axis represents
the running time in second. The left to the right columns show the timing results of smoothing, sampling, E-Step, and M-Step, respectively. The
percentage number associated with each plot is the difference ratio between the maximum and minimum times among the nodes.

one GPU is about two orders of magnitude less than the one using
one CPU core.
The third column of Figure 1 shows the performance of the E-

Step operation performed on the CPUs. For this operation, each
node independently calculates the probability value of each local
line belonging to a cluster, and no communications are required.
Thanks to our sorted balancing algorithm, the E-Step achieves al-
most ideal speedup, and the parallel efficiencies of E-Step are 99%,
98%, 99.5%, and 96.7% for Cases 1 to 4, respectively.
The fourth column of Figure 1 shows the performance of the M-

Step operation performed on the CPUs. The parallel efficiencies of
M-Step are only 52.3% and 19.5% for Cases 1 and 2, respectively,
which are less satisfactory. The main possible reason is that the
psgels and psgemm routines of SCALAPACK are used to estimate
the parameters of each regression model in parallel, and inter-node
communications are required in these routines. When the number
of lines is relatively small, such as in Case 1 or 2, the communica-
tion overhead can dominate the overall time of operation and incur
performance degradation with more nodes. When we increase the
number of lines, the computing time of solving local linear sys-
tems tends to dominate the overall time. With our sorted balancing
algorithm, the solving workload can be well-balanced among the
nodes, and the parallel efficiencies of M-Step are 77.7% and 99.5%
for Cases 3 and 4, respectively.
Figure 2 shows the workload of each operation among 8 nodes

for Cases 1 and 4 with respect to the small and large problem sizes.
We define the difference ratio, dr, of the workloads as:

dr = (max time−min time)/max time,

where max time (min time) is the maximum (minimum) time
among all nodes for the same operation. The dr values for the oper-
ations of Cases 1 and 4 are shown in Figure 2. For instance, in terms
of the smoothing time, the dr values are 0.53% and 3.46% for Cases
1 and 4, respectively. In terms of the M-Step time, the dr values are
0.03% and 0.01% for Cases 1 and 4, respectively. We can observe
that based on our sorted balancing algorithm, we can achieve well
balanced workloads for all operations in both the preprocessing and
clustering stages. We note that each stage is performed on a differ-
ent type of processor, and has a different data representation and a
different data access pattern.
Figure 3 shows the clustering result of the 10,000 streamlines of

the solar plume data set in Case 1, where eight clusters are gener-
ated. Figure 3 (a) shows the overview of all streamlines, and Fig-

ure 3 (b)-(i) show the individual clusters of the streamlines. By
using our clustering method, the bundle of lines are partitioned to a
number of clusters which facilitate recognition and understanding.
Effective visualization results are generated to depict the different
streamline features, by observing which people can perceive the
complex structures and correlations inherent in the turbulent vector
field more clearly.

Figure 4 shows the clustering result of the 100,000 time series
curves of the combustion data set in Case 3, where fourteen clus-
ters are generated. Figure 4 (a) shows the overview of all curves
where the visual clutter is occurred, making it difficult for a user to
perceive structure information. Figure 4 (b)-(j) show the individ-
ual cluster of the curves after applying our clustering method. We
can see that after clustering the data set is well partitioned, and each
cluster consists of similar curves, which allows scientists to observe
the correlations between two variables more easily. Especially, the
patterns shown in Figure 4 (j) are the outliers that do not match
the profile curves from the hypothesis, and the scientists want to
capture and isolate them for further study. For a detailed applica-
tion based on the model-based clustering method, please refer to
our recent work on visual analysis of turbulent combustion particle
data [27].

6 CONCLUSIONS AND FUTURE WORK

We have demonstrated how clustering for visualization of large line
data can be done efficiently with a combination of multiple GPUs
and CPUs. The key aspects of our work include how we prepare
and distribute the line data to facilitate the clustering calculations
and how we devise and implement the model-based clustering al-
gorithm in CUDA and MPI. The scientists we have worked with are
eager to integrate this new visualization capability into their routine
scientific data analysis and discovery process. Presently, the best
scenario for using our design is with in-situ construction of lines
followed by interactive visualization of the lines using a GPU clus-
ter. Later on, as we move to the petascale and exascale computing,
we will likely have to also conduct clustering in situ and compress
the line data as much as possible to reduce storage and transfer
costs. Other future research opportunities include metric design for
categorizing other types of line data, line data packing and stream-
ing, and visualization of higher dimensional line data.



(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: This figure shows the clustering result of the streamlines generated from the solar plume velocity vector field. (a) shows the overview
of all 10,000 streamlines. (b)-(i) show the eight different groups of streamlines.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Figure 4: This figure shows the clustering result of the time series curves relating two variables, mixture fraction (the red axis) and temperature
(the green axis), in the combustion simulation. (a) shows the overview of all 100,000 time series curves. (b)-(j) show the fourteen different groups
of time series curves.



ACKNOWLEDGEMENTS

This work has been sponsored in part by the U.S. Department of
Energy through the SciDAC program with Agreement No. DE-
FC02-06ER25777, and by the U.S. National Science Foundation
through grants OCI-0749227, CCF-0811422, OCI-0749217, OCI-
0950008, and OCI-0850566. Sandia National Laboratories is a
multiprogram laboratory operated by Sandia Corporation, a Lock-
heed Martin Company, for the U.S. Department of Energy under
contract DE-AC04-94-AL85000. The solar plume data set is pro-
vided by John Clyne at the National Center for Atmospheric Re-
search.

REFERENCES

[1] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski.

Visual methods for analyzing time-oriented data. IEEE Transactions

on Visualization and Computer Graphics, 14(1):47–60, 2008.

[2] J. C. Anderson, L. Gosink, M. A. Duchaineau, and K. Joy. Interactive

visualization of function fields by range-space segmentation. Com-

puter Graphics Forum, 28(3):727–734, 2009.

[3] A. Brun, H. Knutsson, H. J. Park, M. E. Shenton, and C.-F. Westin.

Clustering fiber tracts using normalized cuts. In Proceedings of In-

ternational Conference on Medical Image Computing and Computer-

Assisted Intervention, pages 368–375, 2004.

[4] D. R. Cutting, D. R. Karger, J. O. Pedersen, and J. W. Tukey. Scat-

ter/gather: a cluster-based approach to browsing large document col-

lections. In Proceedings of ACM SIGIR Conference on Research and

Development in Information Retrieval, pages 318–329, 1992.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

from incomplete data via the em algorithm. Journal of the Royal Sta-

tistical Society, Series B, 39(1):1–38, 1977.

[6] S. Gaffney and P. Smyth. Trajectory clustering with mixtures of

regression models. In Proceedings of ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 63–72,

1999.

[7] S. Gaffney and P. Smyth. Joint probabilistic curve clustering and

alignment. In Advances in Neural Information Processing Systems,

pages 473–480, 2004.

[8] S. J. Gaffney, A. W. Robertson, P. Smyth, S. J. Camargo, and M. Ghil.

Probabilistic clustering of extratropical cyclones using regression

mixture models. Climate Dynamics, 29(4):423–440, 2007.

[9] J. Han. Data Mining: Concepts and Techniques. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2005.

[10] J. A. Hartigan and M. A. Wong. A k-means clustering algorithm.

JSTOR: Applied Statistics, 28(1):100–108, 1979.

[11] N. P. Kumar, S. Satoor, and I. Buck. Fast parallel expectation max-

imization for gaussian mixture models on GPUs using CUDA. In

Proceedings of IEEE International Conference on High Performance

Computing and Communications, pages 103–109, 2009.

[12] J. B. MacQueen. Some methods for classification and analysis of

multivariate observations. In Proceedings of Berkeley Symposium on

Mathematical Statistics and Probability, pages 281–297, 1967.

[13] M. Maddah, W. E. L. Grimson, S. K. Warfield, and W. M. Wells. A

unified framework for clustering and quantitative analysis of white

matter fiber tracts. Medical Image Analysis, 12(2):191–202, 2008.

[14] B. Moberts, A. Vilanova, and J. J. van Wijk. Evaluation of fiber clus-

tering methods for diffusion tensor imaging. In Proceedings of IEEE

Visualization Conference, pages 65–72, 2005.

[15] R. T. Ng and J. Han. Clarans: A method for clustering objects for

spatial data mining. IEEE Transactions on Knowledge and Data En-

gineering, 14:1003–1016, 2002.

[16] NVIDIA. CUDA C Best Practices Guide (version 4.0), May 2011.

[17] L. O’Donnell and C.-F. Westin. White matter tract clustering and cor-

respondence in populations. In Proceedings of International Confer-

ence on Medical Image Computing and Computer-Assisted Interven-

tion, pages 140–147, 2005.

[18] A. D. Pangborn. Scalable data clustering using GPUs. Master’s thesis,

Rochester Institute of Technology, 2010.

[19] C. Rössl and H. Theisel. Streamline embedding for 3D vector field ex-

ploration. IEEE Transactions on Visualization and Computer Graph-

ics, 99(PrePrints), 2011.

[20] T. Salzbrunn, H. Jänicke, T. Wischgoll, and G. Scheuermann. The

state of the art in flow visualization: Partition-based techniques. In

SimVis, pages 75–92, 2008.

[21] T. Schreck, J. Bernard, T. Von Landesberger, and J. Kohlhammer. Vi-

sual cluster analysis of trajectory data with interactive kohonen maps.

Information Visualization, 8(1):14–29, 2009.

[22] J. S. Shimony, A. Z. Snyder, N. Lori, and T. E. Conturo. Automated

fuzzy clustering of neuronal pathways in diffusion tensor tracking.

In Proceedings of International Society for Magnetic Resonance in

Medicine, pages 453–456, 2003.

[23] S. Tomov, R. Nath, P. Du, and J. Dongarra. MAGMA Users Guide

(version 0.2), November 2009.

[24] A. Tsai, C.-F. Westin, A. O. Hero, and A. S. Willsky. Fiber tract

clustering on manifolds with dual rooted-graphs. In Proceedings of

IEEE Conference on Computer Vision and Pattern Recognition, pages

1–6, 2007.

[25] J. J. van Wijk and E. R. van Selow. Cluster and calendar based visu-

alization of time series data. In Proceedings of IEEE Symposium on

Information Visualization, pages 4–9, 1999.

[26] J. Wei, C. Wang, H. Yu, and K.-L. Ma. A sketch-based interface for

classifying and visualizing vector fields. In Proceedings of IEEE Pa-

cific Visualization Symposium, pages 129–136, 2010.

[27] J. Wei, H. Yu, R. W. Grout, J. H. Chen, and K.-L. Ma. Dual space

analysis of turbulent combustion particle data. In Proceedings of IEEE

Pacific Visualization Symposium, pages 91–98, 2011.

[28] H. Yu, C. Wang, C.-K. Shene, and J. H. Chen. Hierarchical streamline

bundles for visualizing 2D flow fields. In IEEE VisWeek 2010 Posters,

2010.

[29] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an efficient data

clustering method for very large databases. In Proceedings of ACM

SIGMOD international conference on Management of data, pages

103–114, 1996.


